
Detecting similarity of R functions
via a fusion of multiple heuristic methods

Maciej Bartoszuk1 Marek Gagolewski2,3

1 Interdisciplinary PhD Studies Program, Systems Research Institute,
Polish Academy of Sciences, m.bartoszuk@phd.ipipan.waw.pl

2 Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland, gagolews@ibspan.waw.pl

3 Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland

Abstract

In this paper we describe recent advances in our
R code similarity detection algorithm. We pro-
pose a modification of the Program Dependence
Graph (PDG) procedure used in the GPLAG sys-
tem that better fits the nature of functional pro-
gramming languages like R. The major strength of
our approach lies in a proper aggregation of out-
puts of multiple plagiarism detection methods, as
it is well known that no single technique gives per-
fect results. It turns that the incorporation of the
PDG algorithm significantly improves the recall ra-
tio, i.e. it is better in indicating true positive cases
of plagiarism or code cloning patterns. The imple-
mented system is available as web application at
http://SimilaR.Rexamine.com/.

Keywords: R, plagiarism and code cloning detec-
tion, fuzzy proximity relations, aggregation, pro-
gram dependence graph, t-norms

1. Introduction

Finding plagiarism in computer language source
codes is not a trivial task, as definitions of code sim-
ilarity are very fuzzy in their very nature. Firstly,
even if two pieces of code are very similar, or even
the same, it cannot be treated as a 100% proof
of that two students (a most often case when pla-
giarisms are considered is in programming classes)
cheated. There can be some reasons, why two so-
lutions are very similar: one is when a problem is
simple and nature of the problem imposes the same
solution. A second one is when task is formulated in
such a way that it imposes the same solution. For
example, some form of pseudocode is provided in a
task’s formulation.
That is why the problem should not be formu-

lated as a plagiarism detection, but rather as a sim-
ilarity code detection. The similarity of code can be
formulated by mathematical formula in some way,
while judging a plagiarism involves some familiar-
ity with personal relationships between a group of
students, level of skills of every student and his/her
willingness to cheat the tutor. All such factors are
of course hard to quantify.

Moreover, code similarity detection systems can
be also used for code cloning detection. Code
cloning happens when one person uses the same
piece of code in many parts of a project, while some
form of code refactoring should be used.

In a most general approach, two pieces of code
are similar, when they calculate the same thing.
But there is a problem with this approach, because
all the correct solutions of a homework are similar
to each other according to the definition. So an-
other, more specific definition, can be formulated:
two pieces of code are similar, when they calculate
the same thing in the same way. But definition of
“the same way” is very fuzzy and depends on a per-
son and particular code. The same way of calculat-
ing can consist of using the same loops, the same
functions calls and the same set of variables. But
a cheating student can use some artificial, auxiliary
variables, change one type of loop to another and
call some other functions, which do the same. That
is why the method has to classify “not so similar”
functions as similar.

Each algorithm known from the literature,
e.g. GPLAG [1], JPLAG [2], or MOSS [3], induces
its own operational definition of code similarity.
First of all, the problem with such algorithms is
that they are not fitted well to the nature of func-
tional programming languages like R, which is very
popular among data analysts and statisticians. The
second issue is that no single method gives perfect
results in all the possible cases. In our approach,
similarly as in [4], we calibrate and aggregate (us-
ing a statistical learning model) the output of four
different algorithms. The intuition behind this ap-
proach is that a set of “weak classifiers” may per-
form better than individual ones. The novel idea
is to make the similarity comparison results non-
symmetric: for every pair of functions (fi, fj) it may
happen that µ(fi, fj) 6= µ(fj , fi), thus we do not
measure directly the degree of fi ∩ fj , but fi \ fj

and fi \ fj separately. Then, the results may be
symmetrized by using a t-norm, which induces an
additional “degree of freedom”, which then may be
calibrated.

The paper is structured as follows. Sec. 2 estab-
lishes the notation used in this paper, formalizes the

problem, and lists some typical plagiarism attacks.
Sec. 3 briefly recalls the 3 methods of fuzzy proxim-
ity measures used to compare two functions’ source
codes in [4] and describes the fourth method based
on a Program Dependence Graph with novel im-
provements. In Sec. 4 we present an empirical study
of the algorithm’s discrimination performance. Fi-
nally, Sec. 5 concludes the paper.

2. Method overview and problem
formulation

Assume that we have n functions’ source codes
F = {f1, . . . , fn}, where fi is a character string,
i.e. fi ∈

⋃∞
k=1 Σk, Σ is a set of e.g. ASCII-encoded

characters. Each fi is properly normalized by
i.a. removing unnecessary comments and redun-
dant whitespaces and applying the same indenta-
tion style. Normalization is easy in R, as we can
call f <- deparse(parse(text=f)).
Before any method of plagiarism detection can be

created, there is a need to recognize what types of
“attacks” can be performed. Below we include a
taxonomy of plagiarism attacks in R language.

Easy

• Add/remove comments
• Change names of variables
• Change “<-” into “=” or “->”

Moderate

• Change the order of lines of code
• Add/remove line(s) of code
• Expand/shrink of function calls, e.g.:

1 x[order(unlist (lapply (x,f)))]

and

1 y <- unlist (lapply (x,f))
2 o <- order(y)
3 x[o]

Hard
• Change loop into its equivalent form (for into
while, but also into lapply), e.g.:

1 y <- numeric (n)
2 k <- 1
3 for(i in x) {
4 y[k] <- sqrt(i)
5 k <- k+1
6 }

and

1 y <- unlist (lapply (x,
2 function (element){
3 return (sqrt(element))})

or even

1 y <- sqrt(x)

There are many methods of code similarity detec-
tion known in the literature, such as string-based,
token-based [2, 3], or Program Dependence Graph-
based [1]. Every method focuses on different fea-
tures of code. In this paper we define 4 similar-
ity measures µ1, . . . , µ4, which take as arguments
text representations of two functions fi and fj . Ev-
ery method returns a value from 0 to 1, formally
µk(fi, fj) ∈ [0; 1] for k = 1, . . . , 4, how much fi is
similar to fj . Value 1 indicates that one function is
a proper subset of a second function, while 0 means
that these two functions have nothing in common.

Standard approaches treat code similarity as an
equivalence relation, while we propose a subset-type
relation, which is not symmetric. Let us consider an
example, where f1:

1 s <- 0
2 for(i in x){s <- s + i}

and f2:

1 s <- 0
2 for(i in x){s <- s + i}
3 m <- 0
4 for(i in x){m <- m*i}

We are rather interested in methods which return
µ(f1, f2) = 1 and, say, µ(f2, f1) = 0.5.

3. Four code similarity measures

The usage of the first three methods was proposed
in [4]. Let us briefly recall these methods and after
that the fourth, new method (with proper modifi-
cations for the R language) is described in detail.

3.1. Edit distance

The first method is based on simply comparing
plain-text of functions’ source code. In the first ver-
sion of our system we used the Levenshtein distance.
Informally, the Levenshtein distance between two
strings is the minimum number of single-character
edits (i.e. insertions, deletions, or substitutions) re-
quired to change one string into the other one.

In the current version we use the adist() func-
tion from the TRE library with an argument
partial=TRUE. This function is not symmetric, e.g.

1 adist(" abcxxx ", "abc", partial =TRUE)

returns 3, while

1 adist("abc", " abcxxx ", partial =TRUE)

returns 0.
Our first method is defined as:

µ1(fi, fj) = 1−
distfi,fj (|fi|, |fj |)

|fi|

It is easily seen that for a pair of identical strings we
obtain the value of 1. On the other hand, for “abc”
and “defghi” we get 0, as dist“abc”,“defghi”(3, 6) = 3.

3.2. Tokens

Methods based on tokens are quite popular. Two
known tools, JPLAG [2] and MOSS [3] are based
on tokens. The difference between our approach
and the classic one is that we do not use a symmet-
ric metrics. At the last step we divide common part
of functions (generally it is a number of common to-
kens) by a number of tokens of one function, not the
sum of tokens from two functions. The similarity of
two token strings f ′

i and f ′
j is computed via:

µ2(f ′
i , f

′
j) = coverage(tiles)

|f ′
i |

.

For more details please refer to [4].

3.3. Function calls counts

The third method is very effective and dedicated to
the R language. Let R denote the set of names of
all possible R functions and ci(g) be equal to the
number of calls of g ∈ R within fi. This method is
defined with:

µ3(fi, fj) =
∑

g∈R min(ci(g), cj(g))∑
g∈R (ci(g)) .

Again, it is not a symmetric method and we ob-
tain this property by dividing numerator by sum of
function calls for one function only.

3.4. A method based on a Program
Dependence Graph

The first three methods are not dedicated to cases
when a plagiarist swaps two lines of code, change
loop type (e.g. for loop into while loop, or, what
is more complex, into apply function), or does
something which we call function calls’ “expand-
ing/shrinking”. For example, the following function:

1 sortlist <- function (x, f) {
2 x[order(unlist (lapply (x, f)))]
3 }

is “expanded” into:
1 sortlist <- function (x, f) {
2 v1 <- lapply (x, f)
3 v2 <- unlist (v1)
4 o <- order(v2)
5 x[o]
6 }

That is why we decided to implement a method
based on the Program Dependence Graph (PDG),
firstly introduced in [5]. One of the known antipla-
giarism system based on PDG is GPLAG [1] with
some modifications discussed in [6, 7].

The Program Dependence Graph is a graph, in
which single expressions are nodes and there are two
types of edges: control dependency and data depen-
dency edges, see Figs. 5 and 6. The former tell us
about loop and if statements structure. The sub-
graph of PDG, where there are control dependency

edges only is called Control Dependence Subgraph
(CDS). The latter tells us if an expression is get-
ting data from another expression (e.g. we use vari-
able a, so we use data from assignment to variable
a), or is a source of data for another instructions.
The subgraph of PDG, where there are data depen-
dency edges only is called Data Dependence Sub-
graph (DDS). What is more, we will use term con-
trol flow edges, which are not a part of PDG, but
are needed to construct DDS. Control flow edges
just tell us about order of expressions (nodes).

3.4.1. Program Dependence Graph creation

In this section the process of creation the Program
Dependence Graph (PDG) is described. Firstly, the
Control Dependence Subgraph (CDS) has to be gen-
erated, and after that the Data Dependence Sub-
graph (DDS) creation is based on the CDS. The
algorithm is strongly based on [8]. The reader can
find more details in that technical report.

The algorithm has been implemented in C++ us-
ing the Rcpp package. This package makes possible
to create C++ code chunks for R language. Our
C++ implementation bases on the Boost Graph Li-
brary.

Control Dependence Subgraph Every vertex in the
PDG has two properties: USES and GEN. USES
are names of variables which are used in a cor-
responding statement. GEN is a variable’s name
which is created in a corresponding statement.
For example, for “i<-a+b” statement, USES are
{“a”,“b”} and GEN is “i”.

The algorithm starts by creating an artificial ver-
tex “Entry” in PDG. It is a vertex, on which every
top level expression will be control dependent. Af-
ter that, we call CreateCDS() (see Fig. 1) which
iterates over every expression in a function. This
function determines what is the type of an expres-
sion and calls appropriate helper function for it, see
Fig. 2 for an example. For details, like dealing with
break or next statements, we refer reader to [8].
The next paragraphs describe the changes we made
to the algorithm, so it is more adjusted to the R
language.

R is a functional language. It is the a very com-
mon practice to call one function and provide it as
an argument to another function (compare to “ex-
pand/shrink” of function calls in Sec. 2). Our im-
plementation ensures that such alterations result in
the same PDG.

First of all we fetch the most nested call. We cre-
ate a vertex in a PDG for it. USES are variables
used as arguments in this call. GEN is some gen-
erated unique name. After that we substitute this
most nested call with the generated unique name. A
function call which gets this most nested call as an
argument will have this generated unique name in
its USES. Informally, we expand every call in such

a way that we assign every call to a variable and
after that we use these variables as an arguments in
consequent calls (see “expanded version” in Sec. 2).
The pseudocode for processing a function call is in
Fig. 3.
Another modification is that in the R language

there is another type of a loop: the apply() func-
tion. It is a function which takes a vector, list,
matrix or data frame as an argument and applies
a given function on every its element (or row or
column for matrices and data frames). There is
a family of those functions: lapply(), mapply(),
sapply() etc. What is more, we cannot rely on the
name of a function, as it can be very easily changed,
e.g. apply2 <- apply.

That is why we implemented the following ap-
proach: we check if some argument of a function
call is an anonymous function. If this is the case,
we assume that it is an apply-like function and ex-
pand it as a normal loop, like for. Arguments to
this anonymous function are the iterating variables
(and we get them into GEN) and the another ar-
guments of the apply-like function are the variables
names for USES.
Before we can get further we also have to create

control flow edges. A control flow edge connects two
vertices if and only if two corresponding expressions
immediately follow each other. Control flow edges
in PDG enable to recreate the order of expressions
in a function. For more information please refer
to [8].

Data Dependence Subgraph After we obtain CDS,
we can produce DDS. We have to introduce an-
other properties to vertices of PDG: IN and OUT.
These are dictionaries, where a key is a variable
name (character string) and a value is a vertex in-
dex, where the variable name is generated. The
pseudocode which produces DDS is listed in Fig. 4.
What is important, we have to get predecessors of
a vertex in a control flow subgraph (graph where
there are only control flow edges).
One of the novel ideas was to create transitive

data edges. For example, consider two chunks of
code:

1 d <- (b + c) * e
2 fun(d)

and

1 d <- (b + c) * e
2 f <- d
3 fun(f)

A call to function fun() is data dependent on d,
but in the second chunk of code it is dependent on
f. We may add transitive data edges, so that if
vertex B is dependent on A, and C is dependent on
B, we add data edge from A to C. Unfortunately,
adding these edges was computationally demanding
and the results were worse than for a graph without

1 createCDS (node n, vertex parent)
2 {
3 for(node n1 in n. children ()) {
4 switch (TYPEOF (n1)) {
5 case FOR:
6 createForNode (n1 , parent);
7 break;
8 case WHILE:
9 createWhileNode (n1 , parent);

10 break;
11 case REPEAT :
12 createRepeatNode (n1 , parent);
13 break;
14 case IF:
15 createIfNode (n1 , parent);
16 break;
17 case BREAK:
18 createBreakNode (n1 , parent);
19 break;
20 case NEXT:
21 createNextNode (n1 , parent);
22 break;
23 case ASSIGNMENT :
24 case CALL:
25 createCallNode (n1 , parent);
26 break;
27 }
28 }
29 }

Figure 1: Pseudocode of CDS building in general

1 createForNode (node n, vertex parent)
2 {
3 // statement below creates new vertex
4 //in program dependence graph
5 forVertex = CreateNewVertex ();
6 CreateControlEdge (parent , forVertex);
7
8 //in statement below for
9 //"for(i in x)"

10 //we get variable "i"
11 forVertex .GEN =
12 getIterationVariableFromFor (n);
13 //in statement below for
14 //"for(i in x)"
15 //we get variable "x"
16 forVertex .USES =
17 getUsedVariablesFromFor (n);
18
19 node n1 = getBodyOfFor (n);
20 createCDS (n1 , forVertex);
21 // statement below makes proper edges
22 // for "break " and "next" statements
23 makeStructuredTransfers (forVertex);
24 }

Figure 2: Pseudocode of CDS building for for state-
ment

them. Probably there were too many data edges
and it was easier to find false isomorphisms.

1 createCallNode (node n, vertex parent)
2 {
3 // every function which gets an
4 // anonymous function as an argument
5 //is expanded to a loop construct
6 // like for or while
7 if(isApplyFunction (n))
8 createApplyLoop (n);
9

10 // statement below creates new vertex
11 //in program dependence graph
12 callVertex = CreateCallVertex ();
13 CreateControlEdge (parent , callVertex);
14
15 // statement below can approach another
16 // function call as as an argument
17 // and call createCallNode () for it again
18 callVertex .USES = getAllCallArguments (n,
19 parent);
20
21 if(n is assignment)
22 callVertex .GEN =
23 n. leftVariableOfAssignment ;
24 else
25 callVertex .GEN =
26 createUniqueName ();
27 }

Figure 3: Pseudocode of CDS building for function
call statement

1 createDDS (Graph CDS)
2 {
3 bool changes = true;
4 while (changes) {
5 changes = false;
6 // use breadth first search
7 foreach (vertex v in CDS) {
8 v.IN = ∪ P.OUT ,
9 P is a control flow

10 predecessor of v
11 v.OUT = v.OUT ∪ v.IN
12 }
13 for(variableName in v.USES) {
14 for(vertex v1 in
15 v.OUT[variableName]) {
16 CreateDataEdge (v1 , v);
17 }
18 }
19 v.OUT[v.GEN]. insert (v);
20 if (there is change in v.OUT)
21 changes = true;
22 }
23 }

Figure 4: Pseudocode of DDS building

3.4.2. Finding maximum common subgraph
isomorphism

After we obtain PDGs, we have to compare them in
some way, so we can decide, which ones are similar.
GPLAG [1] and also its successors [6, 7] solve sub-

graph isomorphism problem using the VF algorithm
[9] to decide whether there is a similarity between
two PDGs of corresponding functions. Assume that
there are two PDGs: G and G′. We find a subgraph
S′ of G′ which is isomorphic to G. Of course small
change in G causes that it is not isomorphic to any
S′ ⊆ G′. What is more, we have to test it in two
ways: whether G whether a subgraph isomorphic
to G’ and also if G’ is subgraph isomorphic to G.
Authors of GPLAG solve this by introducing the
so-called γ-isomorphism, which means that, S has
to be a subgraph isomorphic to G′, where S ⊆ G
and also |S| ≥ γ|G|, γ ∈ (0, 1]. The use of γ = 0.9
is recommended.

We decided to propose a different approach. As-
sume that we need to evaluate how much objects
A and B are similar to each other. In all similar-
ity problems, there is a need to find common part
of A and B, and after that to calculate, how large
is this common part with respect to A and B. The
answer to this problem may be provided by solving
the maximum common subgraph isomorphism prob-
lem (MCS). Assume that we have again two graphs:
G and G′. Solving MCS is answering the question
“what is the largest subgraph of G isomorphic to a
subgraph of G′?”. We decided to use the McGregor
algorithm [10], which is implemented in the C++
Boost library.

Of course, the maximum common subgraph iso-
morphism problem is NP-complete, as well as the
subgraph isomorphism problem [11]. We observed
that the McGregor algorithm is finding a subgraph
near to the exact common part quite quickly. Our
heuristic is to compute βmax(|V (G)|, |V (G′)|) iter-
ations, where β ≥ 1. In our study we have used
β = 5.
Assume that we create a PDG Gi for every R

function fi we want to check plagiarism. Denote
the common part of graphs Gi and Gj as a Hij . We
define the fourth method as:

µ4(fi, fj) = |V (Hij)|
|V (Gi)|

µ4(fj , fi) = |V (Hij)|
|V (Gj)|

Please note that |V (Hij)| is calculated only once.

4. Experimental results

For a given similarity measure µk and a pair of
functions (fi, fj) we get two degrees of similar-
ity, µk(fi, fj) and µk(fj , fi). We aggregate these
two values with a t-norm. A t-norm is a function
T : [0, 1]× [0, 1]→ [0, 1] which satisfies the following
properties:

• Commutativity: T (a, b) = T (b, a)
• Monotonicity: T (a, b) ≤ T (c, d) if a ≤ c and
b ≤ d

1 sum <- function (x)
2 {
3 s <- 0
4 m <- 1
5 for(i in x) {
6 s <- s + i
7 m <- m*i
8 }
9

10 if(s < 0) {
11 s <- -s
12 print(" Negative s")
13 }
14 if(m < 0) {
15 m <- -m
16 print(" Negative m")
17 }
18 return (s)
19 }

(a) Source code of an R function

Entry
x

s <− 0

m <− 1
For

i:x

Body

s <− s + i

m <− m * i

<:s:0 <− s < 0

If

s < 0

s <− −s

print("Negative s")

<:m:0 <− m < 0 If m < 0

m <− −m

print("Negative m")

return(s)

(b) Control Dependence Graph of an R function

Figure 5: Example of transforming an R function into CDS

1 sum <-function (x)
2 {
3 a <- 5
4 b <- 6
5 for(i in x)
6 {
7 c<-a+b-i
8 }
9 }

(a) Source code of an R
function

Entry x

a <− 5

b <− 6

For

i:x

Body

+:a:b <− a + b

c <− a + b − i

(b) Program Dependence Graph
with dashed transitive data depen-
dency edges

Entry

x

a <− 5

b <− 6

For

i:x

Body

+:a:b <− a + b

c <− a + b − i

(c) Program Dependence
Graph with control flow edges

Figure 6: Example of transforming R function into PDG

• Associativity: T (a, T (b, c)) = T (T (a, b), c)
• The number 1 acts as identity element:
T (a, 1) = a

Among exemplary t-norms we find: minimum
T (a, b) = min(a, b), product T (a, b) = a · b,
Łukasiewicz t-norm: T (a, b) = max(0, a+ b− 1).

Now there is a need to properly aggregate and
calibrate the methods’ output. For that purpose, a
random forest model is used. We created a learning
set, where every observation (fi, fj) is represented
as T (µk(fi, fj), µk(fj , fi)) for k = 1, . . . , 4. Addi-
tionally, each such pair is classified so as to 0 de-
notes no similarity and 1 stands for a similar pair.
As the process of acquiring learning data is time-
consuming (see below), for the purpose of this ex-
periment we decided to use an artificial set, which
is a result of manual transformations of some prede-
fined functions. This gives ca. 30 000 unique pairs
of functions.

In order to obtain data for testing the perfor-
mance of the proposed solution, we created a web
application which is available at http://SimilaR.
Rexamine.com/. Each user can create an account,
send some group of files and asses the results. Of
course, every expert has his/her own definition of
code similarity and sometimes there are cases where
one cannot be totally sure whether a pair of func-
tions is suspicious or not. Thus, 5 grades of pla-
giarism can be chosen: totally different, dissimilar,
hard to say, similar and definitely similar. At the
time of writing this paper, ca. 400 pairs have been
assessed.

In order to verify whether a fusion of multiple
methods gives better results than individual meth-
ods, we decided to train a random forest model on
the first learning set mentioned above and test it
on the data from our website. We classified options
similar and definitely similar as a plagiarism class

and the rest as not plagiarism.
Table 1 summarizes the results. We show the

performance of every individual method in the first
4 rows and after that we show the results for all
the methods combined. In the study we chose the
product t-norm, because it gave the best results for
all the cases. The last 3 columns denote:

accuracy = TP + TN
TP + TN + FP + FN

recall = TP
TP + FN

precision = TP
TP + FP

where TP – number of true positives, i.e. actual
similar pairs are found, FP – number of false posi-
tives, i.e. similarity is indicated, but it should not,
TN – number of true negatives, i.e. no similarity in-
dicated correctly, FN – number of false negatives,
i.e. there is no similarity indicated, but it should.
We see that by aggregating the 4 methods we get

a very high recall rate. This means that our system
is able to correctly detect most of the similar pairs.
In other words, if the output states that a pair is
dissimilar, then it is highly possible that this is the
case. On the other hand, still the precision rate
should be improved – the system seems to be over-
sensitive and qualifies too many pairs as similar.
This, however, may be due to the nature of our
artificial training set.

Table 1: Comparison of performance of systems,
product as a t-norm

E
di

t

T
ok

en
s

F
.

ca
lls

P
D

G

A
cc

.

R
ec

.

P
re

c.

1 0 0 0 0.79 0.74 0.76
0 1 0 0 0.79 0.73 0.77
0 0 1 0 0.81 0.80 0.76
0 0 0 1 0.72 0.49 0.78
1 1 1 1 0.86 0.95 0.77

5. Conclusions

Our plagiarism detection system seems to be quite
accurate. As far as the analyzed data set is con-
cerned, it correctly classified most of the suspicious
similarities. Moreover, the system is – at least the-
oretically – not vulnerable to typical attacks, like
changing names of variables, substituting a while
loop for a for loop, etc. We see that no single algo-
rithm gives perfect results, but a proper data fusion
leads to much better outcomes. Moreover, it turns
out that making the individual similarity detection
algorithms non-symmetric, and then symmetrizing
them with a t-norm also improves the method’s per-
formance. This gives another “degree of freedom”,
which may be optimized and better fit data.

Our web application http://SimilaR.Rexamine.
com/ serves as a tool not only for assessing the
performance of our method, but also for gathering
learning and test data. As soon as more data will be
gathered, we will be able to calibrate our algorithms
so that they give as good performance measures as
possible.

For future work, we see a need for introducing
some fingerprinting of R functions, so that only
some pairs of them can be examined. This could
increase the performance of the system. What is
more, it would be possible to compare new R func-
tions with whole set of R functions in our database.
There is a locality-sensitive hashing (LSH) method,
where hashing functions map similar keys to similar
hash values. Halstead complexity measures also can
be used for that purpose. These measures operates
on the number of distinct operators, operands and
total number of operators and operands.

Acknowledgments

This study was partially supported by the Na-
tional Science Centre, Poland, research project
2014/13/D/HS4/01700.

Maciej Bartoszuk would like to acknowledge
the support by the European Union from re-
sources of the European Social Fund, Project PO
KL “Information technologies: Research and their
interdisciplinary applications”, agreement UDA-
POKL.04.01.01-00-051/10-00 via the Interdisci-
plinary PhD Studies Program.

References

[1] C. Liu, C. Chen, J. Han, and P.S. Yu. GPLAG:
Detection of software plagiarism by program
dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Min-
ing, KDD ’06, pages 872–881, New York, NY,
USA, 2006. ACM.

[2] L. Prechelt, G. Malpohl, and M. Philippsen.
Finding plagiarisms among a set of programs
with JPlag. Journal of Universal Computer
Science, 8(11):1016–1038, 2002.

[3] A. Aiken. Moss (measure of software simi-
larity) plagiarism detection system. http://
theory.stanford.edu/~aiken/moss/.

[4] M. Bartoszuk and M. Gagolewski. A fuzzy R
code similarity detection algorithm. In Anne
Laurent et al., editors, Information Processing
and Management of Uncertainty in Knowledge-
Based Systems, volume 444 of Communications
in Computer and Information Science, pages
21–30. Springer, 2014.

[5] J. Ferrante, K.J. Ottenstein, and J.D. War-
ren. The program dependence graph and its use
in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319–349, 1987.

[6] W. Qu, Y. Jia, and M. Jiang. Pattern mining of
cloned codes in software systems. Information
Sciences, 259:544–554, 2014.

[7] W. Qu, M. Jiang, and Y. Jia. Software reuse
detection using an integrated space-logic do-
main model. In Proc. IEEE Intl. Conf. In-
formation Reuse and Integration 2007, pages
638–643, 2007.

[8] M.J. Harrold, B. Malloy, and G. Rothermel.
Efficient construction of program dependence
graphs. Technical report, ACM International
Symposium on Software Testing and Analysis,
1993.

[9] L.P. Cordella, P. Foggia, C. Sansone, and
M. Vento. Performance evaluation of the VF
graph matching algorithm. In Proc. 10th Intl.
Conf. Image Analysis and Processing, ICIAP
’99, page 1172, Washington, DC, USA, 1999.
IEEE Computer Society.

[10] J.J. McGregor. Backtrack search algorithms
and the maximal common subgraph problem.
Software: Practice and Experience, 12(1):23–
34, 1982.

[11] M.R. Garey and D.S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New
York, NY, USA, 1990.

